Problem M.1: (10 points)

(a) We have a difference equation

$$
y[n]=\sqrt{2} y[n-1]-y[n-2]+x[n] .
$$

We can obtain the system function

$$
Y=\sqrt{2} D Y-D^{2} Y+X \quad \frac{Y}{X}=\frac{1}{1-\sqrt{2} D+D^{2}} .
$$

The block diagram may be readily drawn. A DF II may be used.
And finally, the impulse response may be obtained by performing a partial fraction expansion:

- Replacing D by $z^{-1}: 1-\sqrt{2} z^{-1}+z^{-2}$
- Factoring the lowest power of $z: z^{2}-\sqrt{2} z+1$
- Finding the roots: $\Delta=2-4=-2=(\sqrt{2} j)^{2}$. The roots are

$$
p_{1}=\frac{1+j}{\sqrt{2}}=e^{j \pi / 4} \quad p_{1}=\frac{1-j}{\sqrt{2}}=e^{-j \pi / 4}
$$

- In conclusion: $1-\sqrt{2} D+D^{2}=\left(1-e^{j \pi / 4} D\right)\left(1-e^{-j \pi / 4} D\right)$

Performing the partial fraction expansion:

$$
\frac{Y}{X}=\frac{1}{\left(1-e^{j \pi / 4} D\right)\left(1-e^{-j \pi / 4} D\right)}=\frac{1 /(1+j)}{\left(1-e^{j \pi / 4} D\right)}+\frac{1 /(1-j)}{\left(1-e^{-j \pi / 4} D\right)} .
$$

Finally, the impulse response is

$$
\begin{aligned}
h[n] & =\left[\frac{1}{1+j} e^{j \pi n / 4}+\frac{1}{1-j} e^{-j \pi n / 4}\right] u[n] \\
& =\left[\frac{1}{\sqrt{2}} e^{-j \pi / 4} e^{j \pi n / 4}+\frac{1}{\sqrt{2}} e^{j \pi / 4} e^{-j \pi n / 4}\right] u[n] \\
& =\sqrt{2} \cos [\pi(n-1) / 4] u[n]
\end{aligned}
$$

(b) The system is causal as it is apparent from the impulse response that is a causal function.
(c) The system is not stable. Indeed, the impulse response does not go to zero. Alternatively there are two poles on the unit circle.

Problem M.2: (10 points)

Examining the denominator of the rational function, we identify the roots:

$$
z^{3}-5 z^{2}+8 z-4=(z-1)\left(z^{2}-4 z+4\right)=(z-1)(z-2)^{2} .
$$

Checking the numerator,

$$
z^{4}-1=\left(z^{2}-1\right)\left(z^{2}+1\right)=(z-1)(z+1)\left(z^{2}+1\right)
$$

and hence 1 is also a zero. Therefore, we have a pole-zero cancellation, and 1 is not really a pole. We have only a double pole at 2 . Performing a partial fraction expansion yields:

$$
\begin{aligned}
X(z) & =\frac{z^{4}-1}{z^{3}-5 z^{2}+8 z-4}=\frac{z^{4}-1}{(z-1)(z-2)^{2}}=\frac{(z+1)\left(z^{2}+1\right)}{(z-2)^{2}} \\
& =z+5+\frac{17 z-19}{(z-2)^{2}} \\
& =z+5+\frac{15}{(z-2)^{2}}+\frac{17}{z-2}
\end{aligned}
$$

The possible ROC's are rings delimited by poles and hence we have two choices
(i) $|z|<2(0$ included $)$

The inverse transform is here

$$
\begin{aligned}
x[n] & =\delta[n+1]+5 \delta[n]+\frac{15}{4}(-n+1) \frac{1}{2^{-n}} u[-n]-\frac{17}{2} \frac{1}{2^{-n}} u[-n] \\
& =\delta[n+1]+5 \delta[n]-\frac{1}{4}(15 n+19) 2^{n} u[-n] \\
& =\frac{1}{4} \delta[n]+\frac{1}{2} \delta[n+1]-(15 n+19) 2^{n-2} u[-n-2] .
\end{aligned}
$$

The signal is anti-causal because the ROC extends inward and 0 is included. If it were the impulse response of a DT LTI system, that system will be stable because the ROC includes the UC.
(ii) $2<|z|$ ("infinity" not included)

The inverse transform is here

$$
\begin{aligned}
x[n] & =\delta[n+1]+5 \delta[n]+15(n-1) 2^{n-2} u[n-2]+\frac{17}{2} 2^{n} u[n] \\
& =\delta[n+1]+\frac{27}{2} \delta[n]+17 \delta[n-1]+\frac{1}{4}(15 n+19) 2^{n} u[n-2] .
\end{aligned}
$$

The signal is right sided but not causal because the ROC extends outward and "infinity" is not included. If it were the impulse response of a DT LTI system, that system will not be stable because the ROC does not include the UC.
(a) Since the cosine function is

$$
\cos (z)=\frac{1}{2}\left[e^{j z}+e^{-j z}\right]
$$

we can see that it does not have any point of singularity on the complex domain. However it is not defined at "infinity" and therefore the only possible ROC is \mathbb{C}.
(b) Consider a trigonometric contour around " 0 ". Denoting by a_{l} the singularities of $H(z) z^{n-1}$ inside the contour,

$$
h[n]=\sum \operatorname{Res}\left(\cos (z) z^{n-1}, a_{l}\right) .
$$

If $n \geq 1$ there are no singularities and hence $h[n]=0$. For $n<1$, the function $\cos (z) z^{n-1}$ has a pole at " 0 " of order $m=1-n$. Therefore

$$
h[n]=\left.\frac{1}{(-n)!} \frac{d^{(-n)} \cos (z)}{d z^{(-n)}}\right|_{z=0}= \begin{cases}0 & (-n) \text { odd } \\ \frac{(-1)^{-n / 2}}{(-n)!} & (-n) \text { even }\end{cases}
$$

(c) The impulse response could have been obtained by expanding the cosine:

$$
\cos (z)=1-\frac{1}{2!} z^{2}+\frac{1}{4!} z^{4}+\cdots
$$

Afterward, one may identify the impulse response by tracking the coefficients in the Laurent series.
(d) If $H(z)$ were the system function of a DT LTI system, the system will not be causal and actually, it will be anti-causal. This may be deduced from the time-domain function or from the fact the ROC does not contain infinity but 0 .
The system will be stable because in the time domain we have convergence to zero and in the Z-domain the UC is inside the ROC.

Problem M.4: (10 points)

Since the Z-transform is linear, we can compute the transformation by looking at individual terms. The first term is a delta and hence the Z-transform is the constant " 1 ".
Looking at the second term denoted $v[n]$, we note that

$$
\begin{aligned}
n v[n] & =\left(1 / \omega_{o}\right) \sin \left(\omega_{o} n\right) u[n-1]=\frac{1}{2 \omega_{o} j}\left[e^{j \omega_{o} n}-e^{-j \omega_{o} n}\right] u[n-1] \\
& =\frac{1}{2 \omega_{o} j}\left[e^{j \omega_{o} n}-e^{-j \omega_{o} n}\right] u[n] \\
& =\frac{1}{2 \omega_{o} j}\left(e^{j \omega_{o}}\right)^{n} u[n]-\frac{1}{2 \omega_{o} j}\left(e^{-j \omega_{o}}\right)^{n} u[n] .
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
-z \frac{d V}{d z} & =\frac{1}{2 \omega_{o} j} \frac{1}{1-e^{j \omega_{o}} z^{-1}}-\frac{1}{2 \omega_{o} j} \frac{1}{1-e^{-j \omega_{o}} z^{-1}} \\
\frac{d V}{d z} & =\frac{1}{2 \omega_{o} j} \frac{1}{z-e^{-j \omega_{o}}}-\frac{1}{2 \omega_{o} j} \frac{1}{z-e^{j \omega_{o}}} \\
V(z) & =\frac{1}{2 \omega_{o} j} \log \left(z-e^{-j \omega_{o}}\right)-\frac{1}{2 \omega_{o} j} \log \left(z-e^{j \omega_{o}}\right)=\frac{1}{2 \omega_{o} j} \log \left(\frac{z-e^{-j \omega_{o}}}{z-e^{j \omega_{o}}}\right) .
\end{aligned}
$$

In summary,

$$
X(z)=1+\frac{1}{2 \omega_{o} j} \log \left(\frac{1-e^{-j \omega_{o}} z^{-1}}{1-e^{j \omega_{o}} z^{-1}}\right)
$$

Problem M.5: (10 points)

Applying the definition,

$$
\begin{aligned}
(x * y)[n] & =\sum_{k \in \mathbb{Z}} \cos \left(\omega_{o} k\right) a^{n-k} u[n-k]=a^{n} \sum_{k=-\infty}^{n} \cos \left(\omega_{o} k\right) a^{-k} \\
& =\frac{a^{n}}{2}\left[\sum_{k=-\infty}^{n}\left(e^{j \omega_{o}}\right)^{k} a^{-k}+\sum_{k=-\infty}^{n}\left(e^{-j \omega_{o}}\right)^{k} a^{-k}\right] \\
& =\frac{a^{n}}{2}\left[\sum_{k=-n}^{\infty}\left(e^{-j \omega_{o}}\right)^{k} a^{k}+\sum_{k=-n}^{\infty}\left(e^{j \omega_{o}}\right)^{k} a^{k}\right] \\
& =\frac{a^{n}}{2}\left[\frac{e^{j \omega_{o} n} a^{-n}}{1-e^{-j \omega_{o} a}}+\frac{e^{-j \omega_{o} n} a^{-n}}{1-e^{j \omega_{o}} a}\right] \\
& =\frac{1}{2}\left[\frac{e^{j \omega_{o} n}}{1-e^{-j \omega_{o} a}}+\frac{e^{-j \omega_{o} n}}{1-e^{j \omega_{o} a}}\right]
\end{aligned}
$$

where the convergence is guarantees as long as $|a|<1$.

Problem M.6: (15 points)

Since $H(z)$ is rational and it has only one simple pole at " 1 " and no zeros, its expression is of the form:

$$
H(z)=C \frac{1}{z-1},
$$

where C is a constant to be determined. Note that since the system is causal, the ROC is $|z|>1$.
We also know that if its input is $x[n]=2^{n}$ for all n, then $y[n]=2^{n+1}$ for all n. Since a^{n} are eigenfunctions then we know that $y[n]=H(2) 2^{n}$ (since $z=2$ is in the ROC). By identification $H(2)=C=2$. In conclusion,

$$
H(z)=\frac{2}{z-1}, \quad|z|>1
$$

(a) The impulse response is

$$
h[n]=2 u[n-1] .
$$

(b) To stabilize the system, the pole at " 1 " on the UC has to be canceled. The overall system function of a cascade is the product of the individual ones and therefore, it is possible to achieve stability by using a system with function

$$
(z-1) .
$$

(c) This solution is "implementable". Indeed, it is a stable system but also even though it is not causal, it is finite length and with enough delay it becomes causal.
(d) When a system is added in parallel, the overall response is the sum

$$
\frac{2}{z-1}+\frac{P(z)}{Q(z)}=\frac{2 Q(z)+(z-1) P(z)}{(z-1) Q(z)}
$$

and for the pole at " 1 " to cancel, it needs to be also a root of $Q(z)$, which means even after simplification there will remain a pole at " 1 ".
In summary, it is not possible to obtain an overall stable system.
(e) Not applicable since the answer is "no".

